Package: matchFeat 1.0
matchFeat: One-to-One Feature Matching
Statistical methods to match feature vectors between multiple datasets in a one-to-one fashion. Given a fixed number of classes/distributions, for each unit, exactly one vector of each class is observed without label. The goal is to label the feature vectors using each label exactly once so to produce the best match across datasets, e.g. by minimizing the variability within classes. Statistical solutions based on empirical loss functions and probabilistic modeling are provided. The 'Gurobi' software and its 'R' interface package are required for one of the package functions (match.2x()) and can be obtained at <https://www.gurobi.com/> (free academic license). For more details, refer to Degras (2022) <doi:10.1080/10618600.2022.2074429> "Scalable feature matching for large data collections" and Bandelt, Maas, and Spieksma (2004) <doi:10.1057/palgrave.jors.2601723> "Local search heuristics for multi-index assignment problems with decomposable costs".
Authors:
matchFeat_1.0.tar.gz
matchFeat_1.0.zip(r-4.5)matchFeat_1.0.zip(r-4.4)matchFeat_1.0.zip(r-4.3)
matchFeat_1.0.tgz(r-4.4-any)matchFeat_1.0.tgz(r-4.3-any)
matchFeat_1.0.tar.gz(r-4.5-noble)matchFeat_1.0.tar.gz(r-4.4-noble)
matchFeat_1.0.tgz(r-4.4-emscripten)matchFeat_1.0.tgz(r-4.3-emscripten)
matchFeat.pdf |matchFeat.html✨
matchFeat/json (API)
# Install 'matchFeat' in R: |
install.packages('matchFeat', repos = c('https://ddegras.r-universe.dev', 'https://cloud.r-project.org')) |
- optdigits - Handwritten Digits Data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:9c76900d9a. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 08 2024 |
R-4.5-win | NOTE | Nov 08 2024 |
R-4.5-linux | NOTE | Nov 08 2024 |
R-4.4-win | NOTE | Nov 08 2024 |
R-4.4-mac | NOTE | Nov 08 2024 |
R-4.3-win | NOTE | Nov 08 2024 |
R-4.3-mac | NOTE | Nov 08 2024 |
Exports:match.2xmatch.bcamatch.bca.genmatch.gaussmixmatch.kmeansmatch.recmatch.templateobjective.funobjective.gen.funRand.index
Readme and manuals
Help Manual
Help page | Topics |
---|---|
One-to-One Feature Matching | matchFeat-package |
Pairwise Interchange Heuristic (2-Assignment-Exchange) | match.2x |
Block Coordinate Ascent Method | match.bca |
Block Coordinate Ascent Method for General (Balanced or Unbalanced) Data | match.bca.gen |
Gaussian Mixture Approach to One-To-One Feature Matching | match.gaussmix |
K-Means Matching Algorithm | match.kmeans |
Recursive Initialization Method | match.rec |
Template Matching | match.template |
Calculate Cost of Multidimensional Assignment | objective.fun |
Objective Value in One-To-One Feature Matching with Balanced or Unbalanced Data | objective.gen.fun |
Handwritten Digits Data | optdigits |
Match New Feature Vectors To Existing Clusters | predict.matchFeat |
Print a matchFeat Object | print.matchFeat |
Rand Index of Agreement Between Two Partitions | Rand.index |
Summarize a matchFeat Object | summary.matchFeat |